High Performance Liquid Chromatography (HPLC)

High-performance liquid chromatography (HPLC) has become a very versatile and powerful separation and analytical method over the years. It is an advanced form of liquid chromatography (LC).


Image Credit: khawfangenvi16/Shutterstock.com

Instead of introducing the solvent into the column and allowing it to drip down under the influence of gravity, in HPLC, the sample is forced through the column under high pressures of nearly 400 atm, resulting in faster and more efficient separation.

This technique is also called high-pressure liquid chromatography.

The Principle of HPLC

HPLC follows the same basic principle as chromatography. Different components in the sample have varying affinities to the adsorbent material. This causes a difference in the flow rate for each component which leads to their separation as they come out of the column. The only difference is that the speed and sensitivity of HPLC are much higher than that of LC due to the application of high pressure.

The magnitude of pressure applied depends on several factors such as the length and diameter of the column, flow rate, size of particles in the stationary phase, and mobile phase composition.

The Components of HPLC

Columns: HPLC columns are normally made of stainless steel and are 50 - 300mm long with an internal diameter of 2 - 5mm. They are filled with the adsorbents (stationary phase) of particle size 3 – 10µm.

Sample Injector: The sample is injected into the column by an injector which is capable of handling sample volumes in the range of 0.1 - 100mL under high pressures of up to 4000psi.

Reservoir: The solvent or the mobile phase is placed in a glass reservoir. It is usually a blend of polar and non-polar liquids whose concentrations depend on the sample composition.

Pump: The solvent in the mobile phase is aspirated by a pump from the reservoir and forced through the HPLC column and then the detector.

Detector: The detector in an HPLC system is located at the end of the column and it detects the components of the sample that elute from the column. Different types of detectors such as fluorescence, mass-spectrometric, UV-spectroscopic, and electrochemical detectors are used.

Data collection systems: The signal from the detector is received by recorders which are used to process, store, and reproduce chromatographic data. The data is interpreted and integrated by a computer that produces a user-friendly chromatograph.

The Technique of HPLC

The key steps in the HPLC separation technique are as follows:

  • Injection of the liquid sample into the column containing the stationary phase.
  • Individual sample components are forced down the tube by high pressure from the pump.
  • Components are separated under the influence of various chemical/physical interactions with the particles in the stationary phase.
  • The separated analytes are identified by the detector present at the end of the column.
  • The detector measures the concentration of the components.
  • Data from the detector is processed and a chromatogram is produced.

The Applications of HPLC

HPLC is widely used in the following applications:

  • Qualitative analysis - Separation of thermally unstable chemical and biological compounds, e.g., drugs (aspirin and ibuprofen), salts (sodium chloride), proteins (egg white or blood), organic chemicals (polystyrene and polyethylene), herbal medicines, and plant extracts.
  • Quantitative analysis - To determine the concentration of a compound in a sample by measuring the height and area of the chromatographic peak.
  • Preparation of pure substances for clinical and toxicology studies and in organic synthesis. This is also called preparative chromatography.
  • Trace analysis – this is the analysis of compounds present in very low concentrations in a sample. This is very useful in pharmaceutical, toxicology, environmental, and biological studies.


Further Reading

Last Updated: Oct 28, 2020

Susha Cheriyedath

Written by

Susha Cheriyedath

Susha has a Bachelor of Science (B.Sc.) degree in Chemistry and Master of Science (M.Sc) degree in Biochemistry from the University of Calicut, India. She always had a keen interest in medical and health science. As part of her masters degree, she specialized in Biochemistry, with an emphasis on Microbiology, Physiology, Biotechnology, and Nutrition. In her spare time, she loves to cook up a storm in the kitchen with her super-messy baking experiments.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2020, October 28). High Performance Liquid Chromatography (HPLC). AZoLifeSciences. Retrieved on January 18, 2021 from https://www.azolifesciences.com/article/High-Performance-Liquid-Chromatography-(HPLC).aspx.

  • MLA

    Cheriyedath, Susha. "High Performance Liquid Chromatography (HPLC)". AZoLifeSciences. 18 January 2021. <https://www.azolifesciences.com/article/High-Performance-Liquid-Chromatography-(HPLC).aspx>.

  • Chicago

    Cheriyedath, Susha. "High Performance Liquid Chromatography (HPLC)". AZoLifeSciences. https://www.azolifesciences.com/article/High-Performance-Liquid-Chromatography-(HPLC).aspx. (accessed January 18, 2021).

  • Harvard

    Cheriyedath, Susha. 2020. High Performance Liquid Chromatography (HPLC). AZoLifeSciences, viewed 18 January 2021, https://www.azolifesciences.com/article/High-Performance-Liquid-Chromatography-(HPLC).aspx.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
You might also like... ×
Seafood study finds plastic in all samples