Designing plants through more-sophisticated genetic editing

Genetic manipulation was used by humans for millennia, long before they worked in lab coats Selective breeding has been employed for a very long time to produce plants and animals of great value, from adorable dogs to palatable fruit.

Designing plants through more-sophisticated genetic editing
Plants aboard the International Space Station. Image Credit: NASA

In laboratories these days, scientists perform more accurate genetic manipulation. However, the outcomes have not always been great. Until recently, genetic alteration may have been a little clunky, producing organisms that thrived in the laboratory but not in the real world.

Taking control

Professor Ryan Lister of the University of Western Australia has co-authored research on how more complex genetic editing might improve plant design.

Organisms have complex programs that control when, where and to what degree genes are turned on or off. We want to genetically modify plants with sophistication equal to what natural evolution has achieved.”

Ryan Lister, Professor, University of Western Australia

These intricate control programs, which emerged spontaneously, enable the plant to respond to its surroundings. A plant, for instance, may have spontaneously evolved a gene that is only “turned on” under extreme heat conditions. Researchers can replicate the genetic control program in another area of the plant if they can figure out the natural genetic mechanism that activates that gene. In this case, it means that it is possible to program a plant to react to heat in a specific way.


Understanding this level of genetic manipulation could give researchers more control over plant economic output. It might transform them into perfectly tuned biological factories that effectively produce high-value molecules, or it could boost their resistance to harsh external effects like pests and climate change.

This research has numerous applications. It has the potential to be a game changer in Australia’s agricultural sector, which is becoming extremely sensitive to extreme environmental conditions.

When weather becomes unpredictable, it causes destabilization to established systems,” adds Ryan Lister.

As a result, climate-proofing plants would have been most likely an obvious application of the research findings.

What about cultivating plants in space? Can Ryan's research assist us in this endeavor?

Space seeds

Ryan is a member of the Australian Research Council Centre of Excellence in Plants for Space, a multi-university research effort. The initiative will investigate how to create plants that flourish in off-Earth environments.

As humans have spread across the world over the past many thousands of years, we’ve taken plants with us. Plants underpin our civilization and enrich our lives and our health. Not to mention, they’re incredibly efficient and versatile machines that can create an enormous diversity of molecules and materials.”

Ryan Lister, Professor, University of Western Australia

It would be impossible to carry machinery that produces medicine or other materials if colonies are founded on the Moon or Mars. However, if plants are genetically modified to generate specific compounds on demand, all that is needed is to bring the seeds to develop those plants.

Back on the ground

Ryan’s study can be used for other things, including vertical farming, back on Earth. The revolutionary agricultural method is based on precisely controlled environmental inputs.

When we grow plants in an efficient indoor controlled environment, we can achieve very high growth and productivity with really low nutrient and water usage. But these are entirely different environments from what the plants evolved in, and they come with their own challenges. We aim to overcome these to achieve even greater productivity and versatility.”

Ryan Lister, Professor, University of Western Australia

Ryan Lister concludes, “Indoor agriculture could remove the challenges of transporting fresh produce from distant farms where they’re conventionally produced to the major points of demand and consumption. And for some countries that are land constrained, this could be a real boon for overcoming challenges of food sovereignty.”

Numerous steps must be taken in order to produce genetically altered plants on Mars. But, as anyone who has experimented with gardening knows, enormous things develop from small things.

Climate Change Could Affect Global Agriculture Within 10 Years

Video Credit: NASA via YouTube.

Journal reference:

Lloyd, J. P. B., et al. (2022) Synthetic memory circuits for stable cell reprogramming in plants. Nature Biotechnology.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    The University of Western Australia. (2023, January 11). Designing plants through more-sophisticated genetic editing. AZoLifeSciences. Retrieved on June 16, 2024 from

  • MLA

    The University of Western Australia. "Designing plants through more-sophisticated genetic editing". AZoLifeSciences. 16 June 2024. <>.

  • Chicago

    The University of Western Australia. "Designing plants through more-sophisticated genetic editing". AZoLifeSciences. (accessed June 16, 2024).

  • Harvard

    The University of Western Australia. 2023. Designing plants through more-sophisticated genetic editing. AZoLifeSciences, viewed 16 June 2024,


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Human food scraps could be repurposed to secure future fish