Glioblastoma is the most aggressive and malignant form of glioma, a type of primary brain cancer. Surgery is often used to treat gliomas, along with radiation. However, since surgery and radiation fail to cure the disease, doctors may turn to additional radiation or chemotherapy. In early stages glioblastoma tumors often grow without symptoms and therefore can become quite large before symptoms arise. When the tumor becomes symptomatic, tumor growth is usually very rapid and is accompanied by altered brain function, and if left untreated the disease becomes lethal. Although primary treatment is often successful in temporarily stopping the progression of the tumor, glioblastomas almost always recur and become lethal.
For gene therapy, the blood-brain barrier (BBB) poses a formidable obstacle. The BBB, which is made up of cells that are closely packed together, prevents poisons and pathogens from accessing brain tissue while also blocking potential treatments for diseases that impact the CNS.
A group of Northwestern University researchers has created a novel gene editing platform that might influence the future application of a nearly infinite library of CRISPR-based therapeutics.
The interferon-gamma receptor (IFNgR) signaling pathway has been identified to be crucial for the vulnerability of glioblastoma tumors to death by CAR T-cell immunotherapy, according to researchers at Massachusetts General Hospital (MGH).
Patients diagnosed with a type of brain tumor survived for longer when they were treated aggressively with surgery, radiation and chemotherapy.
Therapies based on engineered immune cells have recently emerged as a promising approach in the treatment of cancer.
Years of toil in the laboratory have revealed how a marine bacterium makes a potent anti-cancer molecule.
It is estimated that about a quarter of cancer patients are at risk of brain metastases, a rate that is increasing especially among those who suffer relapses after having undergone different cancer treatments.
For decades, a small group of cutting-edge medical researchers have been studying a biochemical, DNA tagging system, which switches genes on or off. Many have studied it in bacteria and now some have seen signs of it in, plants, flies, and even human brain tumors.
Analysis of the entire tumor RNA picks up more clinically relevant genetic changes in children with cancer than traditional diagnostic methods, new research has shown.
A folic acid-like drug, L-methylfolate, when administered alongside the standard therapy for patients with recurrent glioblastoma, changed aDNA process within their brain tumors, according to results from a phase 1 clinical trial.
University of Delaware biochemist Jeff Mugridge is trying to figure out how so-called mRNA eraser enzymes work in our cells, why those erasers can sometimes misbehave and lead to cancer, and how science can pave the way for possible solutions to this problem.
Scientists have discovered a new link that could bring the scientific and medical community closer to understanding why glioblastoma, the most common malignant brain tumor, is deadlier in males than females.
Multi-institutional researchers have succeeded in efficiently delivering an immune checkpoint inhibitor (ICI) into the mouse brain, confirming its high efficacy and specificity in treating orthotopically transplanted mice with glioblastoma (GBM). The research was published in Nature Biomedical Engineering.
Pairing a newly developed gel with immunotherapy that was delivered to post-surgical mouse brains with glioblastoma, a highly malignant and deadly cancer, improved the immunotherapy's effectiveness, report researchers from the University of North Carolina Lineberger Comprehensive Cancer Center and colleagues.
A team led by researchers at Weill Cornell Medicine, the New York Genome Center, Harvard Medical School, Massachusetts General Hospital and the Broad Institute of MIT and Harvard has profiled in unprecedented detail thousands of individual cells sampled from patients' brain tumors.
Gliomas are the most common primary brain tumors in adults. Among them, high-grade glioblastomas (GBMs) are particularly known to be notoriously aggressive and invasive, which makes it challenging to treat them.
A new study reports the use of single-cell, force spectroscopy methods to probe biophysical and biomechanical kinetics of cancer cells.
Oncotarget published "Dynamic cellular biomechanics in responses to chemotherapeutic drug in hypoxia probed by atomic force spectroscopy" which reported that by exploiting single-cell, force spectroscopy methods, the authors probed biophysical and biomechanical kinetics of brain, breast, prostate, and pancreatic cancer cells with standard chemotherapeutic drugs in normoxia and hypoxia over 12-24 hours.
A promising treatment for melanoma and other types of cancers is neoadjuvant immune checkpoint blockade (ICB).
Preclinical research from The University of Texas MD Anderson Cancer Center finds that although glioblastoma stem cells (GSCs) can be targeted by natural killer (NK) cells, they are able to evade immune attack by releasing the TFG-β signaling protein, which blocks NK cell activity.