Phage display platform helps discover new antifreeze proteins

Mitigating and controlling the impact of ice growth is critical for infrastructure safety, preserving frozen cells, and improving the texture of frozen foods.

Phage display platform helps discover new antifreeze proteins
Using viruses (phage display) to identify the one molecule in a billion (peptide8) that controls the formation of ice. Image Credit: University of Warwick.

A phage display platform was used by Warwick Scientists in collaboration with Swiss researchers to discover new, tiny peptides that act like larger antifreeze proteins. This opens the door to new, easier-to-make cryoprotectants.

Ice binding proteins, which include antifreeze proteins, are developed by a wide variety of species, ranging from fish to insects to plants, to avoid ice damage. Also, in the presence of a huge amount of water (which ice is the solid form of), the proteins can recognize and attach to ice.

New antifreeze proteins have typically been discovered by isolation from the organisms. The team took a quite different method in this work, scanning billions of potential peptides to identify those that could bind to ice. This was accomplished by Phage Display, a technology in which a virus is used to produce a large number of peptides, and those that “bind” to the ice can be isolated.

Using this, a cyclic peptide with 14 amino acids (very short relative to a typical protein) that could bind to ice was found. The researchers used computer simulations to figure out how the peptide binds to the ice, which is impossible to do with only “wet” laboratory techniques.

The researchers have demonstrated how this short peptide can be used to aid in the purification of other proteins using ace affinity purification.

By finding these short peptides, it means a research team can now easily create (or buy) modified peptides to learn and probe how these bind with ice, allowing them to design new cryoprotectants with simpler structures and hence lower cost.

In the study “A Minimalistic Cyclic Ice-Binding Peptide from Phage Display,” published in Nature Communications, an international group including the University of Warwick and led by EPFL, Switzerland, showed the use of phage display to explore new minimalistic antifreeze peptides that traditional methods could not accomplish. This would not enable billions of potential structures to be monitored.

This work highlights that even very small changes within the structure of these peptides can make a huge difference in their ability to control the formation of ice. Our computer simulations allowed us to identify and understand the importance of these structural changes—which is a key step toward the rational design of synthetic cryoprotectants.

Dr Gabriele Sosso, Assistant Professor, Department of Chemistry, University of Warwick

It is such a privilege to be able to leverage both the experimental work of Gibson’s group and the computational resources of the SCRTP. Truly, Warwick is a great place to be if you want to understand how ice forms and what can we do to have a say in this process,” added Sosso.

We have been working on developing synthetic tools to understand, and interfere with, ice growth processes with an aim of helping develop new cryoprotectants. This work was really exciting, as we made use of biotechnology tools (phage) to discover small, cyclic, peptides which are remarkably potent.

Matthew Gibson, Professor, Department of Chemistry and Warwick Medical School, University of Warwick

These peptides are easy to synthesis and modify and will accelerate our research in this field. It also highlights the growing ‘team ice’ collaborative network at Warwick, combining experimental and computation studies together. We are also grateful for the support from the IAS at Warwick, which allowed Dr. Stevens to visit us to complete this work, showing the need to support international scientific collaborations,” concluded Gibson.

Journal reference:

Stevens, C. A., et al. (2021) A minimalistic cyclic ice-binding peptide from phage display. Nature Communications.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    The University of Warwick. (2022, December 14). Phage display platform helps discover new antifreeze proteins. AZoLifeSciences. Retrieved on May 17, 2024 from

  • MLA

    The University of Warwick. "Phage display platform helps discover new antifreeze proteins". AZoLifeSciences. 17 May 2024. <>.

  • Chicago

    The University of Warwick. "Phage display platform helps discover new antifreeze proteins". AZoLifeSciences. (accessed May 17, 2024).

  • Harvard

    The University of Warwick. 2022. Phage display platform helps discover new antifreeze proteins. AZoLifeSciences, viewed 17 May 2024,


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Study shows the efficacy of plant-based diet on blood pressure