What is Lab-on-a-Chip?

Advances in the field of nanotechnology have led to the development of miniaturized devices called lab-on-a-chip (LOC). Lithography, in particular, has helped create nanoscale impressions on the surface of metals and semiconductors.

LOC technology is concerned with laboratory experiments carried out on a very small scale.  It can integrate several laboratory functions on a chip of size ranging from a few millimeters to a few square centimeters. This helps achieve high-throughput screening and automation.

Lab on chip (LOC) is device that integrates laboratory functions on nano chip, Image Copyright: science photo / Shutterstock
Lab on a chip (LOC) is a device that integrates laboratory functions on nanochip, Image Copyright: science photo / Shutterstock.com

Advantages and Disadvantages

LOC technology enables the use of small fluid volumes which helps cut costs and the analysis of reagents and response time. It also allows greater control over sample concentrations as well as interactions to reduce the quantity of chemical waste. This technology can aid the development of highly compact systems through mass production.

However, LOC is an emerging technology and has a few disadvantages. The physical and chemical effects such as surface roughness, capillary forces, and chemical interactions between materials are more significant at the microscale level. This can often result in complications during LOC experiments which would not be expected with traditional lab equipment.  The principles of detection might not always be in agreement with microscale dynamics and this can result in a low signal-to-noise ratio.

Lab-on-a-chip: catching molecular messages sent by tumors | Yong Zeng | TEDxLawrence

Applications of Lab-on-a-Chip

Most of the research on LOC technology so far has focused on its applications in the field of diagnostics such as its use in diagnostic devices in medical offices or at sites that have limited or no access to laboratory facilities. Several applications in life science and medicine have also been explored so far including potential use in protein crystallization studies and DNA or RNA sequencing.

Customized synthesis of radioactively labeled chemical compounds for use in techniques such as positron emission tomography has also been studied. It has been demonstrated that sample sizes as compact as a single cell can be used in LOC experiments.

Lab On A Chip: Think Small to Think Big

Engineers at Rutgers University have recently developed a novel device based on LOC technology. According to the developers, this device can significantly cut costs related to lab tests for diseases such as HIV, syphilis, and Lyme disease. The breakthrough device is said to exploit the ability of LOC systems to use minute amounts of fluid for biochemical assays. This would be beneficial as such assays usually require large volumes of blood or other samples and costly chemical reagents and hence are very expensive. The new LOC device employs microfluidics technology and makes these lab tests more affordable for researchers as well as patients.

This breakthrough could go a long way in promoting new research due to its capability to carry out complex biochemical analyses using only 10 percent of sample volumes than is needed for traditional tests. The device also automates most of the skilled labor involved in carrying out these tests in the lab while providing accurate and sensitive results. This could open up more avenues for research on central nervous system disorders such as Parkinson’s disease, as these studies are currently limited by the low volume of cerebrospinal fluid that researchers can extract to perform traditional assays.


Although the advent of microfluidics triggered a lot of excitement, very few LOC-based devices have been successfully produced as there are a lot of challenges faced in the commercialization of this technology. Therefore, despite successful demonstration of several theoretical models and proof-of-concept studies on LOC, only a few LOC-based systems for practical use have actually been introduced into the market.

Though many research groups and startup companies have developed potentially transformative methods for fluid delivery and control, and signal detection, these integrated techniques have only been useful for short-term research - they have not directly been integrated in real-world products for practical use yet. The need of the hour would be to strike a balance between the design and real-world impact of integrated devices.


Further Reading

Last Updated: Feb 2, 2021

Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2021, February 02). What is Lab-on-a-Chip?. AZoLifeSciences. Retrieved on April 17, 2024 from https://www.azolifesciences.com/article/What-is-Lab-on-a-Chip.aspx.

  • MLA

    Cheriyedath, Susha. "What is Lab-on-a-Chip?". AZoLifeSciences. 17 April 2024. <https://www.azolifesciences.com/article/What-is-Lab-on-a-Chip.aspx>.

  • Chicago

    Cheriyedath, Susha. "What is Lab-on-a-Chip?". AZoLifeSciences. https://www.azolifesciences.com/article/What-is-Lab-on-a-Chip.aspx. (accessed April 17, 2024).

  • Harvard

    Cheriyedath, Susha. 2021. What is Lab-on-a-Chip?. AZoLifeSciences, viewed 17 April 2024, https://www.azolifesciences.com/article/What-is-Lab-on-a-Chip.aspx.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.