Interconnected mycobacteria stay alive longer

The tuberculosis pathogen Mycobacterium tuberculosis can protect itself better when combined and thus stay alive longer in the air. This was the result of a study by the Leibniz Research Alliance INFECTIONS, which was published in the scientific journal Scientific Reports on Monday.

The study examined the biophysical properties of tiny particles in the air (aerosols) that contribute to the spread of the pathogen. A successful human-to-human infection is determined, among other things, by the distance that the pathogen can travel through the air before the infectivity decreases. Conclusion: Although individual mycobacteria form smaller aerosols and can thus travel longer distances in the air, interconnected mycobacteria remain alive for longer.

The study is based on earlier results that showed that mycobacteria-infected host cells die necrotic cell death, as occurs in the lungs of tuberculosis patients. It has now been shown that larger aerosol particles from mycobacterial clusters are produced together with components of the dead cells, which are more viable in the air than individual bacteria. Based on these data, computer simulations of airborne dispersal, which take into account the particle size distribution, can be carried out in the future, which will help to find out which aerosol composition may pose an increased risk of infection for humans.

The study was carried out at the Research Center Borstel, Leibniz Lung Center (FZB) in Schleswig-Holstein and the Heinrich Pette Institute (HPI), Leibniz Institute for Experimental Virology in Hamburg. The Leibniz Institute for Tropospheric Research (TROPOS) contributed its expertise in modelling the dispersion of aerosols such as mycobacterial associations floating in the air to the study.

Currently there is a controversial discussion about the importance of the aerosol dispersion of the SARS-CoV-2 virus for the COVID-19 pandemic. Findings on the aerosol spread of pathogens are therefore of particular interest. Whether parts of the new findings on the tuberculosis pathogen can be transferred to the COVID-19 pathogen is, however, currently completely open, since tuberculosis is transmitted by a bacterium that is significantly larger than the SARS-CoV-2 virus. Viruses are considered to be much more sensitive to environmental influences, as they depend on protection by moisture and dry out relatively quickly.

Journal reference:

Pfrommer, E., et al. (2020) Enhanced tenacity of mycobacterial aerosols from necrotic neutrophils. Scientific Reports.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New Research Sheds Light on the Evolution of Skin Appendages