Acute Myeloid Leukemia (AML) is a rapidly progressing cancer of the blood characterized by the uncontrolled proliferation of immature blast cells in the bone marrow. The Leukemia and Lymphoma Society estimates that over 13,000 new cases of AML were diagnosed and approximately 9,000 deaths from AML occurred in the U.S. during 2007. AML is generally a disease of older adults, and the median age of a patient diagnosed with AML is about 67 years. A majority of elderly patients are not considered candidates for standard induction therapy or decline therapy, resulting in an acute need for new treatment options.
Inositol is a sugar required for cells to survive. Most cells either get it from the bloodstream or make it themselves. Since there is plenty of inositol available, some cancer cells decide to stop making it.
Researchers elucidate why certain drugs, in clinical trials, for treating a kind of acute myeloid leukemia often fail and revealed a means to restore their efficacy.
The chemotherapy drug decitabine is commonly used to treat patients with blood cancers, but its response rate is somewhat low. Researchers have now identified why this is the case, opening the door to more personalized cancer therapies for those with these types of cancers, and perhaps further afield.
According to recent research at the University of Guelph, a compound found in avocados may one day lead to improved leukemia treatment.
According to a new study, targeting a pathway that is critical for the survival of some cases of acute myeloid leukemia could open up a new therapeutic route for patients.
A Phase II trial led by researchers at The University of Texas MD Anderson Cancer Center found that BK virus (BKV)-specific T cells from healthy donors were safe and effective as an off-the-shelf therapy for BKV-associated hemorrhagic cystitis (BKV-HC), a painful complication common after allogeneic stem cell transplants for patients with leukemia or lymphoma.
Researchers have explained mechanisms that play a role in maintaining the embryonic stem cells in the most optimized state for use in regenerative medicine.
Knocking out a protein known to stifle T cell activation on CAR T cells using the CRISPR/Cas9 technology enhanced the engineered T cells' ability to eliminate blood cancers, according to new preclinical data from researchers in the Perelman School of Medicine at the University of Pennsylvania and Penn's Abramson Cancer Center.
Scientists have discovered that sodium bicarbonate - also known as baking soda or bicarbonate of soda - can reprogram T cells in leukemia patients to resist the immune-suppressing effects of cancer cells, which can drive leukemia relapse after stem cell transplants.
Scientists have shown that cancer rebuilds the architecture of human chromosomes, which allows the disease to take hold and spread.
A combination regimen of venetoclax and azacitidine was safe and improved overall survival (OS) over azacitidine alone in certain patients with acute myeloid leukemia (AML), according to the Phase III VIALE-A trial led by The University of Texas MD Anderson Cancer Center.
A pre-clinical study led by scientists at Cincinnati Children's demonstrates that in mice the drug barasertib reverses the activation of fibroblasts that cause dangerous scar tissue to build up in the lungs of people with idiopathic pulmonary fibrosis (IPF).
Acute myeloid leukemia (AML) is one of the most common forms of blood cancer among adults and is associated with a low survival rate, and leads to the inhibition of normal blood formation.
Acute myeloid leukemia is an aggressive cancer of the blood-forming system. It affects the hematopoietic stem cells, or blood stem cells, of various white blood cells and of the red blood cells and platelets.
A team of researchers at University of California San Diego School of Medicine and Moores Cancer Center used CRISPR technology to identify key regulators of aggressive chronic myeloid leukemia, a type of cancer that remains difficult to treat and is marked by frequent relapse.