Novel Drug Compound Reduces Sensory Hypersensitivity in Fragile X Mice

Boosting the activity of inhibitory interneurons in Fragile X mice reduced their hypersensitivity to sensory stimuli, according to a new Neuron study led by UCLA Health researchers.


Fragile X Syndrome, which is caused by a mutation in a single gene, is the most common inherited form of intellectual disability and autism. Many people with Fragile X are extremely sensitive to sights, sounds, and touch, among other sensory experiences.

Previous research found Fragile X mice have a lower density of parvalbumin (PV) inhibitory interneurons, the main class of inhibitory neurons in the cerebral cortex – the region of the brain responsible for sensory processing. These neurons act like a brake on excitatory neurons to help them fire only when necessary.

Because autism symptoms first appear during the toddler stage and likely reflect changes in the brain that happened earlier, the researchers sought to establish when the reduced activity of PV interneurons was first apparent during brain development in mice – and whether intervention could help mitigate sensory hypersensitivity.

Researchers recorded neuronal activity in the brains of young mice during the first two weeks of life. They then sought to influence this activity through a novel drug compound that boosts the firing of PV neurons.


Researchers found that the density of PV neurons is indeed lower in Fragile X mice compared to controls – but even in mice as young as six days old. There were also greater numbers of dying PV neurons during early development in Fragile X mice, suggesting that these neurons are dying at a higher rate than what is considered healthy.

They also found that PV neurons in young Fragile X mice were unable to regulate the activity of excitatory neurons during the first two weeks of development, indicating that these neurons are functionally decoupled during this time. That could explain why researchers were able to restore PV neuron density by boosting PV neuron activity during this period of development but could not restore the activity of excitatory neurons.

Researchers then administered a novel drug compound aimed at activating PV neurons in Fragile X mice during the third week of development. The treatment restored the ability of excitatory neurons to respond to touch, resembling how they function in healthy controls. It also reduced hypersensitivity to repeated touch, which is similar to what is known as tactile defensiveness in humans with Fragile X.


While there are no existing treatments for the root cause of Fragile X, there are medications that address symptoms like anxiety, ADHD, or seizures. The new research suggests modulating the activity of PV neurons could be an effective approach to restoring circuit function.

Our research is an example of how therapies that target circuit differences in neurodevelopmental conditions, like boosting the activity of inhibitory neurons in the brain, could help mitigate bothersome symptoms such as sensory hypersensitivity."

Carlos Portera-Cailliau, Study Corresponding Author and Professor of Neurology and Neurobiology, David Geffen School of Medicine, University of California Los Angeles

Nazim Kourdougli, PhD, a postdoctoral fellow in Portera-Cailliau's lab, is the first author.

Portera-Cailliau's lab will continue investigating how inhibitory neurons make synapses with excitatory neurons during development, and how the mutation in Fragile X affects this process. It will also test if the same drug compound can ameliorate other behavioral differences in Fragile X mice.

Journal reference:

Kourdougli, N., et al. (2023) Improvement of sensory deficits in fragile X mice by increasing cortical interneuron activity after the critical period. Neuron.


The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Super-Cooled Brain Cell Molecules Shed Light on Epilepsy Drug Action