Malaria is a mosquito-borne disease caused by a parasite called Plasmodium - when infected mosquitoes bite the human body, the parasites multiply in the liver, and then infect red blood cells. Even though this potentially fatal disease can be prevented and cured, each year 350-500 million cases of malaria still occur worldwide, and over one million people die, most of them young children in Africa south of the Sahara, where one in every five (20%) childhood deaths is due to the effects of the disease.
Malaria is so common in Africa because a lack of resources and political instability have prevented the building of solid malaria control programs. Experts say an African child has on average between 1.6 and 5.4 episodes of malaria fever each year and according to the World Health Organization (WHO) as many as half of the world's population are at risk of malaria mainly in the world's poorest and most vulnerable countries and every 30 seconds a child dies from malaria.
Some of the most essential processes on the planet involves water and energy entering and leaving cells.
Pancreatic cancer cells use a normal waste removal process to hide tags on their surfaces that would otherwise let the immune system destroy them, a new study finds. Published online April 22 in Nature, the study results help to answer a longstanding question: why are pancreatic cancers so resistant to immunotherapies, which use the body's own immune defenses to fight cancer?
Researchers from North Carolina State University and Collaborations Pharmaceuticals have created a free-to-use database of 14,000 known macrolactones - large molecules used in drug development - which contains information about the molecular characteristics, chemical diversity and biological activities of this structural class.
In recent years, RNA molecules, with the ability to affect or turn off pathogenic genes, have become promising drug candidates in several areas.
New research from entomologists at UC Davis clears a potential obstacle to using CRISPR-Cas9 "gene drive" technology to control mosquito-borne diseases such as malaria, dengue fever, yellow fever and Zika.
The parasite causing the most severe form of human malaria uses proteins to make red blood cells sticky, making it harder for the immune system to destroy it.
Until now, the immune sensor TLR8 has remained in the shadows of science. A research team led by the University of Bonn has now discovered how this sensor plays an important role in defending human cells against intruders.