Research shows how microbubbles can be used to administer potent cancer drugs

New research has shown how microbubbles carrying powerful cancer drugs can be guided to the site of a tumor using antibodies.

Microbubbles are small manufactured spheres half the size of a red blood cell - and scientists believe they can be used to transport drugs to highly specific locations within the body.

In a paper published in the journal Theranostics, the lead authors of the study, Drs Nicola Ingram and Laura McVeigh from the University of Leeds, describe how they have targeted microbubbles through the use of a 'navigational aid' - antibodies attracted to the growth hormone found in high levels in the blood vessels supplying a tumor.

The antibodies were attached to the microbubbles - and as a result of being attracted to the growth hormone, the microbubbles became concentrated at the site of the tumor. A pulse from an ultrasound device was used to burst open the microbubbles, and that released the anti-cancer agent.

Dr Ingram, Senior Research Fellow in the School of Medicine at Leeds, said being able to deliver anticancer drugs in a very targeted fashion would be a major advance in cancer therapy.

She added: "One of the big problems with cancer drugs is that they are highly toxic to the rest of the body too. Microbubble technology allows us to use these very powerful drugs with precision and that reduces the risk of the drug damaging healthy cells nearby.

"It is about finely focused drug delivery."

The animal-based study also revealed that by attaching the drug directly to the microbubbles allowed it to circulate in the body for longer, increasing delivery into the tumor - in effect making the drug more potent.

As a result, the scientists were able to slow cancer growth with a much smaller drug dose.

The results of this study are exciting because we not only show the very precise and targeted way microbubbles can be guided to cancer sites but that the efficacy of drug delivery is substantially improved, opening the way to use highly toxic drugs to fight cancer, without the harmful side effects."

Stephen Evans, Study Author and  Professor, Head of the Molecular and Nanoscale Physics Group, University of  Leeds

"Put simply: you get more bang for your buck."

The next stage of the research is to look at using microbubbles to develop targeted, triggered, delivery systems in patients for the diagnosis and treatment of advanced colorectal cancer, the third most common cancer in the UK.

Professor Peter Simpson, Chief Scientific Officer at Medicines Discovery Catapult said: "Complex medicines have the potential to be the third wave of medicines, addressing patients' problems which conventionally administered small molecules and monoclonal antibodies cannot.

"This project is a very encouraging example of exploring how using an advanced drug delivery technology could improve biodistribution, targeting and efficacy of a potentially toxic therapeutic."

This study involved a research team from the universities of Leeds, Bradford, Manchester, and the Medicines Discovery Catapult in Cheshire. The study and a follow-on study were funded by the Engineering and Physical Sciences Research Council. In addition, several PhD students are also developing microbubbles for treatment of other diseases and have been funded by Alumni.

The University of Leeds has established the Leeds Microbubble Consortium, a group of cancer scientists, engineers, physicists and chemists to develop ways microbubble technology could enhance cancer treatment.

Source:
Journal reference:

Ingram, N., et al. (2020) Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues. Theranostics. doi.org/10.7150/thno.49670.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New Human Intestinal Immuno-Organoids Reveal Insights into Immune Cell Dynamics and Cancer Immunotherapy