Hydrodynamic Model Explores the Physics Behind World’s Fastest Swimming Birds

Penguins aren't just cute: they're also speedy. Gentoo penguins are the fastest swimming birds in the world, and that ability comes from their unique and sophisticated wings.

In Physics of Fluids, by AIP Publishing, researchers from the University of Chinese Academy of Sciences, Chinese Academy of Sciences, and King Mongkut's Institute of Technology Ladkrabang developed a model to explore the forces and flow structures created by penguin wings underwater. They determined that wing feathering is the main factor for generating thrust.

Penguin wings, aka flippers, bear some resemblance to airplane wings covered with scaly feathers. To maximize efficiency underwater instead of in the air, penguin wings are shorter and flatter than those of flying birds.

The animals can adjust swimming posture by active wing feathering (changing the angle of their wings to reduce resistance), pitching, and flapping. Their dense, short feathers can also lock air between the skin and water to reduce friction and turbulence.

Penguins' superior swimming ability to start/brake, accelerate/decelerate, and turn swiftly is due to their freely waving wings. They allow penguins to propel and maneuver in the water and maintain balance on land. Our research team is always curious about sophisticated creatures in nature that would be beneficial to mankind."

Prasert Prapamonthon, Author

The hydrodynamic model takes in information about the flapping and feathering of the wings, including amplitude, frequency, and direction, and the fluid parameters, such as velocity and viscosity. Using the immersed boundary method, it solves for the motion of the wing and the thrust, lift, and lateral forces.

To establish the movement of wings across species, researchers use the ratio of wing flapping speed to forward speed. This value avoids any differences between air and water. Additionally, the authors define an angle of thrust, determined by the angle of the wings. Both of these parameters have a significant impact on the penguin's thrust.

"We proposed the concept of angle of thrust, which explains why finned wings generate thrust: Thrust is primarily determined by the angle of attack and the relative angle of the wings to the forward direction," said Prapamonthon. "The angle of thrust is an important concept in studying the mechanism of thrust generated by flapping motion and will be useful for designing mechanical wing motion."

These findings can guide the design of aquatic vehicles by quickly estimating propulsion performance without high experimental or computational costs.

In the future, the team plans to examine a more realistic 3D penguin model. They will incorporate different wing properties and motion, such as starting, braking, turning, and jumping in and out of water.

Source:
Journal reference:

Zhanzhou, H., et al. (2023) Hydrodynamic performance of a penguin wing: Effect of feathering and flapping. Physics of Fluids. doi.org/10.1063/5.0147776.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Whirligig Beetles Propel Robotic Boat Design Into the Future