Brain Cell Genetics Drive Alzheimer's Progression

Developing treatments for Alzheimer's disease (AD) is difficult because complex underlying mechanisms drive different types of cells that may contribute to the disorder. Microglia and astrocytes, resident immune and support cells in the central nervous system, are known to exclusively express several genes linked to risk of AD -; particularly AD dementia. However, it was previously unclear exactly how and when these genetic risk factors contributed to other, distinct stages of AD progression, such as the accumulation of amyloid-β plaques and tau tangles.

Researchers led by a team at Brigham and Women's Hospital, a founding member of the Mass General Brigham healthcare system, identified the impact of AD genetic risk specific to each major brain cell type on key disease processes. They implemented single nucleus RNA sequencing to calculate cell-type-specific AD polygenic risk scores from two large clinical research study datasets.

Using autopsy data spanning all stages of disease severity, along with independent neuroimaging data from asymptomatic, preclinical stages of AD, the investigators were able to characterize the contributions of cell-specific risk genes. Astrocyte-specific genetic risk contributed to earlier stages of disease progress, like amyloid-β accumulation, while microglia-specific risk played a part in later phases of plaque and tau tangle accumulation, and cognitive decline.

Our results provide human evidence for how genetic risk in specific brain cells affects AD processes, some even before the onset of clinical symptoms. Future studies could extend our technique to other aspects of AD or even other diseases, in order to help develop targeted treatments."

Hyun-Sik Yang, MD, Department of Neurology, Brigham and Women's Hospital

Source:
Journal reference:

Yang, H.-S., et al. (2023). Cell-type-specific Alzheimer’s disease polygenic risk scores are associated with distinct disease processes in Alzheimer’s disease. Nature Communications. doi.org/10.1038/s41467-023-43132-2.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
St. Jude Researchers Discover NLRC5's Role in Inflammatory Cell Death