Scientists develop new experimental approach to study molecular interactions

When two cars collide at an intersection -- from opposite directions -- the impact is much different than when two cars -- traveling in the same direction -- "bump" into each other. In the laboratory, similar types of collisions can be made to occur between molecules to study chemistry at very low temperatures, or "cold collisions."

A team of scientists led by Arthur Suits at the University of Missouri has developed a new experimental approach to study chemistry using these cold "same direction" molecular collisions. Suits said their approach hasn't been done before.

When combined with the use of a laser that 'excites' the molecules, our approach produces specific 'hot' states of molecules, allowing us to study their individual properties and provide more accurate experimental theories. This is a condition that does not occur naturally but allows for a better understanding of molecular interactions."

Arthur Suits, a Curators Distinguished Professor of Chemistry, College of Arts and Science, University of Missouri

Suits equated their efforts to analyzing the results of a marathon race.

"If you only look at the average time it takes everyone to complete the Boston Marathon, then you don't really learn much detail about a runner's individual capabilities," he said. "By doing it this way we can look at the fastest 'runner,' the slowest 'runner,' and also see the range and different behaviors of individual 'runners,' or molecules in this case. Using lasers, we can also design the race to have a desired outcome, which shows we are gaining direct control of the chemistry."

Suits said this is one of the first detailed approaches of its kind in this field.

"Chemistry is really about the collisions of molecules coming together and what causes chemical reactions to occur," he said. "Here, instead of crossing two beams of molecules with each other as researchers have often done before, we are now pointing both beams of molecules in the same direction. By also preparing the molecules in those beams to be in specific states, we can study collisions in extreme detail that happen very slowly, including close to absolute zero, which is the equivalent of the low temperature states needed for quantum computing."

Source:
Journal reference:

Amarasinghe, C., et al. (2020) State-to-state scattering of highly vibrationally excited NO at broadly tunable energies. Nature Chemistry. doi.org/10.1038/s41557-020-0466-8.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Designing Compounds for Next-Gen Antibiotics and Cancer Treatments