Biochemical methods reveal signal transduction mystery inside human pathogen

In order to adapt to the changing environment, bacteria must quickly transform extracellular information into appropriate intracellular reactions. A two-component system (TCS) is the main signal transduction protein in prokaryotic cells to transform environmental stimuli into cellular responses.

HptRSA is a newly discovered TCS, which is composed of glucose-6-phosphate (G6P) related sensor protein HptA, transmembrane histidine kinase HptS, and cytoplasmic effector HptR.

It mediates G6P uptake and supports the growth and proliferation of Staphylococcus aureus, a major human pathogen, in different host cells. However, the molecular mechanism of sensing G6P signal and triggering downstream reaction by HptRSA sensor complex has been a mystery.

Recently, a team led by Prof. TAO Yuyong from the School of Life Sciences, University of Science and Technology of China of the Chinese Academy of Sciences, in cooperation with Hefei National Laboratory for Physics Sciences at the Microscale, revealed the signal transduction mystery inside S. aureus, using a comprehensive application of biochemical and structural biology research methods. The study was published online in PNAS.

By analyzing the HptA structures in the substrate-free state and G6P binding state respectively, scientists found that G6P could bind to the gap between two HptA proteins and cause the two HptA proteins to close to each other.

The complex structure of HptA protein and HptSp shows that HptA can interact with HptS through the constitutive interface and another switchable interface. When G6P is not bound, HptA and HptSp have bound far away from the membrane and cause two HptSps to be arranged in parallel.

When HptA binds to G6P, the junction of HptA and HptSp is parallel to each other and switches to the side close to the membrane, causing the rotation of HptSp, the C-terminal of two HptSps then approach each other, transducing the extracellular signal into the cell.

On the basis of the above structural discovery, scientists combined biochemical and growth analysis of HptA and HptS mutants and proposed the G6P HptRSA signal transduction mechanism mediated by interface switch.

These results provide important clues for the nutritional sensing mechanism of bacteria, and expand the understanding of TCS activation mode for external signal transmission.

Source:
Journal reference:

Wang, M., et al. (2020) Interface switch mediates signal transmission in a two-component system. Proceedings of National Academy of Scienceshttps://www.pnas.org/doi/full/10.1073/pnas.1912080117

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Soil pH Influences Microbial Community Formation and Nitrogen Cycling