Sampling environmental DNA and RNA could help determine the presence of pathogens

Conventional techniques lack the potential to easily sample wider geographical areas and huge numbers of individuals. This often hampers real-world disease and parasite monitoring.

DNA

DNA. Image Credit: Billion Photos/Shutterstock.com

This can lead to patchy data that lack what scientists require to predict and mitigate outbreaks. In a new study reported in BioScience, researchers Jessica Farrell (University of Florida), Liam Whitmore (University of Limerick), and David Duffy (University of Florida) explain the potential of innovative molecular methods to overcome such drawbacks.

The researchers note that sampling of environmental DNA and RNA, or eDNA and eRNA, will enable scientists to better identify the presence of both human and wildlife pathogens. The eDNA and eRNA method works by collecting a sample (usually from an aquatic source), the genetic contents of which are then sequenced to uncover the occurrence and prevalence of pathogens.

The eDNA or eRNA offers scientists a timely picture of the disease spread, which “can help predict the spread of pathogens to nearby new and susceptible geographic locations and populations in advance, providing opportunities to implement prevention and mitigation strategies,” added the researchers.

During the COVID-19 pandemic, for example, scientists employed eRNA analysis of wastewater to trace large-scale outbreaks of disease and found that “wastewater detection of SARS-CoV-2 eRNA increased rapidly prior to medical detection of human outbreaks in those regions, with environmental virus concentration peaking at the same time or before the number of human-detected cases, providing advanced warning of a surge in infected individuals.”

This progressive knowledge will help limited and vital medical resources to be provisioned where they will be most required.

The advantages of eDNA and eRNA analysis are not limited to the detection of human pathogens. The researchers add that these tools could even help understand the presence and transmission of pathogens that hinder wildlife conservation efforts, for example, chelonid herpesvirus 5, the turtle-specific DNA virus.

The eDNA tracking of this pathogen might enable scientists to assess the spread of the disease—specifically, the idea that the virus is most often transmitted by “superspreader” individuals.

According to Farrell, Whitmore, and Duffy, these technologies have a bright future, “with the potential to vastly exceed traditional detection methods and the capacity to improve the detection and monitoring of aquatic pathogens and their vulnerable host species, including humans.”

Source:
Journal reference:

Farrell, J. A, et al. (2021) The Promise and Pitfalls of Environmental DNA and RNA Approaches for the Monitoring of Human and Animal Pathogens from Aquatic Sources. BioScience. doi.org/10.1093/biosci/biab027.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Protein RAD51 Acts as Guardian Against DNA Over-Replication