Unraveling Regulatory Mechanisms When Plants Use Nitrogenous Fertilizers in the Roots

Insights into gene and protein control systems that regulate the use of nitrogen by plant roots could help develop crops that require less nitrogenous fertilizers to produce acceptable yields. Plant biochemist Soichi Kojima and colleagues at Tohoku University discuss their findings and future plans in an article in the journal Frontiers in Plant Science.

Nitrogen is such a crucial nutrient for plants that vast quantities of nitrogen-containing fertilizers are spread on farmlands worldwide. These fertilizers mostly contain nitrogen as ammonium ions (NH4 +), the chemical form in which nitrogen is most readily taken up by plant roots. However, excess nitrogen in the soil and in drainage run-off into lakes and rivers causes serious ecological imbalances, including algal blooms that de-oxygenate water and kill fish and other aquatic life.

One of the key goals of modern agricultural research is to develop crops that can grow healthily without relying on so much added nitrogen."

Soichi Kojima, Plant Biochemist

He adds that there are also significant economic and environmental incentives behind this aim, pointing out: "Energy from vast quantities of fossil fuels is currently needed to convert nitrogen in the air into ammonium for fertilizers."

The researchers worked with the small flowering plant thale cress (Arabidopsis thaliana), a common species used for laboratory studies in plant science.

"Taken together, our results reveal, at the genetic level, regulatory mechanisms at work when plants utilize nitrogenous fertilizers in their roots," says Kojima.

The team's next step is to determine if the processes they have identified in Arabidopsis are shared by other plant species, especially major crop plants such as rice and other cereals. If that is confirmed it could open an avenue for plant breeders and geneticists to generate crops that might need much less fertilizer while still producing the yields needed to feed the world. Enhancing the production or activity of the amino acid-making enzymes could be the key to success.

Source:
Journal reference:

Kojima, S., et al. (2023). Coregulation of glutamine synthetase1;2 (GLN1;2) and NADH-dependent glutamate synthase (GLT1) gene expression in Arabidopsis roots in response to ammonium supply. Frontiers in Plant Science. doi.org/10.3389/fpls.2023.1127006.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
First Comprehensive Map of Protein Movement in Yeast Cell Cycle Revealed