INRS professor receives $700,000 for research on bacteria of the nasopharynx

Professor Frédéric Veyrier of the Institut national de la recherche scientifique (INRS) has received $711,450 from the Canadian Institutes of Health Research (CIHR) for a project on bacteria of the nasopharynx, including Neisseria.

His team is seeking to determine the mechanism of their pathogenesis in order to find innovative treatment options.

Several pathogenic bacteria that are nesting in the upper respiratory system, such as Neisseria meningitidis or Haemophilus influenzae, cause serious diseases, such as meningitis or sepsis. Taken together, all these respiratory microbes represent the leading causes of death in the world, especially at a time of high antimicrobial resistance."

Frédéric Veyrier, Professor and Study Lead, Institut national de la recherche scientifique (INRS)

The evolution of these bacteria has allowed the emergence of several mechanisms necessary for their maintenance and multiplication. Bacteria ancestors adapted through a series of genetic alterations allowing them to multiply in specific ecosystems.

Evolution of bacteria

The research team is particularly interested in the nasopharynx, an ecosystem located behind the nose that serves as a gateway and transit site for several pathogens. Expert in the field of bacterial evolution, the team is focusing on species in the genus Neisseria.

"This genus is a good example because it includes only two pathogenic species, namely Neisseria meningitidis and Neisseria gonorrhoeae, which are responsible for meningococcal meningitis and gonorrhea," the researcher points out.

These two species are closely related since they come from a common ancestor that does not cause disease. This oral ancestor gradually adapted to the nasopharynx ecosystem, leading to the emergence of Neisseria meningitidis. Then, the bacterium adapted to the genital environment, leading to the emergence of Neisseria gonorrhoeae.

Using, among other things, high-throughput sequencing, bioinformatics and infection models, Professor Veyrier's team will be able to determine the mechanism of the genetic modifications and the roles they played in the adaptation of Neisseria to different ecosystems, as well as their ability to cause damage.

"Knowing what was required for these bacteria to adapt and colonize different ecosystems in the human body is crucial to finding new therapeutic avenues," concludes Professor Veyrier. The team has also discovered a potential treatment for these antibiotic-resistant bacteria.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Using Nanoparticles to Inactivate Multidrug-Resistant Bacteria