How Plant-Derived Nutrients can Affect the Gut and Brain

Can plant-derived nutrients alter gut bacteria to affect brain function? Scientists from the University of Leipzig Medical Center, the Max Planck Institute for Human Cognitive and Brain Sciences and the Helmholtz Centre for Environmental Research investigated this question in a study of overweight adults. Their findings, published in the journal Gut, suggest that dietary fibre can exert influence on both the composition of gut bacteria and the reward signals in the brain and associated food decision-making.

How Plant-Derived Nutrients can Affect the Gut and Brain
Participants in the study consumed a high-dose prebiotic from chicory root for two weeks. Image Credit: Colourbox

Prebiotics are used to foster the colonisation of beneficial bacteria in the gut. These indigestible dietary fibres are found in plant-derived foods such as onions, leeks, artichokes, wheat, bananas, and in high concentrations in chicory root. They support gut health by promoting the growth and activity of beneficial gut bacteria. Researchers have now investigated whether certain prebiotics can also influence brain function by improving communication between the gut microbiome and the brain.

The interventional study led by the University of Leipzig Medical Center indicates that consumption of high-dose dietary prebiotics leads to a reduction in reward-related brain activation in response to high-calorie food stimuli.

The results suggest a potential link between gut health and brain function, in this case food decision-making.”

PD Dr Veronica Witte, Co-Author of the study, Scientist at the University of Leipzig Medical Center

Young to middle-aged adults with overweight were selected for the study who followed an omnivorous, Western diet. The 59 volunteers consumed 30 grams of inulin, a prebiotic from chicory root, daily for 14 days. During functional MRI imaging, participants were shown pictures of food and asked how much they desired to eat the meals depicted. Following the MRI experiment, they were provided with their highest rated dish and asked to consume it.

The MRI examination was repeated at four timepoints, before and after the prebiotic administration and before and after a placebo phase in which the participants were given a preparation with identical energy density but without prebiotics. When the participants evaluated high-calorie foods, there was comparatively less activation of reward-related brain areas after they had consumed the prebiotic fibre. This effect was accompanied by a shift in the composition of the gut bacteria.

The findings, derived from advanced neuroimaging, next-generation sequencing of gut bacteria, and combined analyses of potential metabolic pathways, suggest that functional microbial changes may underlie the altered brain response towards high-caloric food cues. Fasting blood samples from the participants underwent analysis for gastrointestinal hormones, glucose, lipids, and inflammatory markers. In addition, gut microbiota and their metabolites, namely short-chain fatty acids, were measured in stool samples. The research was conducted within the Collaborative Research Centre 1052, “Obesity Mechanisms„.

“Further studies are needed to investigate whether treatments that alter the microbiome could open up new avenues for less invasive approaches to the prevention and treatment of obesity. A better understanding of the underlying mechanisms between the microbiome, gut, and brain could help to develop new strategies that promote healthier eating habits in people at risk” says Dr Witte. A follow-up study is currently underway, examining the effects of long-term, high-dose prebiotic administration over six months on eating behaviour, brain function and body weight in people living with overweight and obesity.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Efficient and Reproducible BBB Modeling for Drug Development