Regulating cancer stemness using combination of nanotechnology and genetic engineering

The development of chemotherapeutic agents with selective anti-cancer activities is increasingly unattractive due to the emergence of resistance, poor targeting of cancer tissues, and subsequent metastasis.

Among tumor characteristic cell types, cancer stem cells are increasingly associated with cancer progression and metastasis, reflecting self-renewal and their propensity to enter the circulation.

Scientists at Japan Advanced Institute of Science and Technology (JAIST) have created a regulation technology of fatal cancer stemness using the combination of nanotechnology and genetic engineering called "photothermogenetics" that allows for effective cancer elimination.

Developed by Associate Professor Eijiro Miyako and his team from JAIST, photo-active functional nanocarbon complexes, which made of polyethylene glycol (PEG)-modified carbon nanohorns (CNH) with an antibody against the receptor potential vanilloid family type 2 (TRPV2), showed high potential as a targeting cancer chemotherapeutic agent.

In fact, the nanocomplexes are effectively heated by biologically permeable near-infrared light. After application to cancer cells and mice tumor models, these complexes photo-thermally triggered calcium influx into target cells overexpressing TRPV2 (temperature-responsive membrane protein), resulting in increased cancer cell death and effective regulation of cancer stemness.

The present experiments warrant further consideration of this novel chemotherapeutic approach using the best combination of nanotechnology and genetic engineering for the treatment of refractory cancers and control of fatal cancer stemness.

Source:
Journal reference:

Yu, Y., et al. (2020) Photothermogenetic inhibition of cancer stemness by near-infrared-light-activatable nanocomplexes. Nature Communications. doi.org/10.1038/s41467-020-17768-3.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Unlocking Glucose-Driven Mechanisms of Immunosuppression in Glioblastoma