Researchers uncover a novel biochemical mechanism fundamental to plant life

University of Adelaide researchers as part of a multidisciplinary, international team, have uncovered a new biochemical mechanism fundamental to plant life.

The research, published in The Plant Journal details the discovery of the enzymatic reaction involving carbohydrates present in plant cell walls, which are essential for their structure.

Project leader, Professor Maria Hrmova, said the discovery contributes to important knowledge about how plant cell walls could be formed, structured and re-modelled.

Plant cell walls perform a number of essential functions, including providing shape to the many different cell types needed to form the tissues and organs of a plant, intercellular communication, and they play a role in plant-microbe interactions, including defence responses against potential pathogens."

Maria Hrmova, Project Leader and Professor, University of Adelaide

Earlier research into the chemistry and function of the xyloglucan carbohydrates in plants had found that xyloglucan xyloglucosyl transferase enzymes are one of the key accelerants in the re-modelling of cell walls.

It has only been through the development of the methodology used in this study, recombinant technology - which makes it possible to isolate proteins in a pure state - and the availability of defined carbohydrates, that it has been possible to observe the enzymatic reaction which occurs between the xyloglucan and pectin carbohydrates.

"When we were able to closely observe the substrate specificity of barley xyloglucan xyloglucosyl transferases, we discovered a chemical reaction, which results in the production of a hetero-polysaccharide (a carbohydrate composed of chemically distinct components). We could also examine these reactions at the molecular levels to define how these enzymes precisely work," Professor Hrmova said.

"It is one thing to be able to identify the different components of cell walls in plants, but that is not enough, we need to understand how they are formed and what they do, and this method of isolating pure proteins so they can be examined, allowed us to do just that," Professor Hrmova said.

"This discovery is a new building block in our understanding of how the cell wall could be constructed."

"Once you understand how something is made, you can then look at constructing or de-constructing it in different ways," Professor Hrmova said.

"That is why fundamental knowledge on how these enzymes function is so valuable."

The findings could have far-reaching implications for the sustainability of plant-based industries such as agriculture, horticulture, forestry for biofuels production and food and materials processing.

To date the team have characterised four out of 36 xyloglucan xyloglucosyl transferases in barley, so there is still many more to examine, which could lead to further discoveries.

Once this work has been completed for barley, the methodology could be applied to examining the cell walls of other crops such as wheat and rice.

"Plants are the world's largest renewable resource - plants feed the world and they also produce energy in the form of biofuels," Professor Hrmova said.

The knowledge could allow for the bioengineering of similar proteins involved in plant cell wall re-modelling to create higher quality foods and to learn how to de-construct plant cell walls to obtain biofuels.

Source:
Journal reference:

Stratilová, B., et al. (2020) Another building block in the plant cell wall: Barley xyloglucan xyloglucosyl transferases link covalently xyloglucan and anionic oligosaccharides derived from pectin. The Plant Journal. doi.org/10.1111/tpj.14964.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Single-Cell Sequencing Reveals Mechanism of Coronary Artery Formation