Study provides a feasible tool to evaluate vesicular endocytosis of NPC1L1-cargos and cholesterol absorption

Excessive cholesterol absorption from intestinal lumen contributes to the pathogenesis of hypercholesterolemia, which is a well-established risk factor for atherosclerotic cardiovascular disease. The absorption of intestinal cholesterol is primarily mediated by Niemann-Pick C1-like 1 (NPC1L1) protein, which is responsible for about 70% cholesterol absorption. NPC1L1-deficient mice are resistant to diet-induced hypercholesterolemia, which provides a compelling strategy for intervention the related diseases through inhibiting NPC1L1 expression or activity.

NPC1L1 protein is expressed in the brush border membrane of small intestine. The protein is extensively N-glycosylated and composed of 1332 amino acids with 13 transmembrane segments, which makes it hard to prepare an ideal antibody to analyze its behavior in vivo. Based on the studies using cell lines in vitro, it is putatively regarded that NPC1L1 mediates cholesterol absorption through clathrin-mediated endocytosis. However, this notion also has some unresolved challenge. Actually, the endocytic vesicles of NPC1L1 with cholesterol have not been demonstrated under physiological conditions, since it lacks a feasible tool to visualize and evaluate the endocytosis of NPC1L1 vesicles in vivo.

Using CRISPR/Cas9 gene editing technology, scientists from Naval Medical University in China generated a mouse model in which the endogenous NPC1L1 protein was tagged with enhanced green fluorescent protein (EGFP). The NPC1L1-EGFP mice enable the researchers to fluorescently visualize and evaluate the vesicular endocytosis of NPC1L1-cargo during intestinal cholesterol absorption. This study was published online in Life Metabolism on March 2023, with the title of "Fluorescent visualization and evaluation of NPC1L1-mediated vesicular endocytosis during intestinal cholesterol absorption in mice".

In this study, the homozygous NPC1L1-EGFP knock-in mice were found to have normal cholesterol homeostasis on the chow or high-cholesterol diet conditions. The fluorescence of NPC1L1-EGFP fusion protein localized at the brush border membrane of the villus rather than the crypts in the duodenum, jejunum, and ileum, but not colon. The pattern is consistent with the characteristics of endogenous NPC1L1 distribution in the control mice. The EGFP-positive vesicles were visualized beneath the brush border membrane as early as 5 min and peaking at 15 min post oral gavage of cholesterol. Of note, the vesicles colocalized with the early endosomal marker EEA1 and the filipin-stained free cholesterol, and cholesterol gavage triggered the accumulation of EEA1-positive vesicles beneath the brush border membrane. Pretreatment with NPC1L1 inhibitor ezetimibe inhibited the formation of these cholesterol-induced endocytic vesicles, further supporting that the vesicular endocytosis is involved in NPC1L1-mediated cholesterol absorption. This study, for the first time, clearly demonstrates free cholesterol in NPC1L1 endocytic vesicles during intestinal cholesterol absorption under the physiological condition. It provides a feasible tool to evaluate the vesicular endocytosis of NPC1L1-cargos as well as cholesterol absorption in vivo under pathophysiological and pharmacological conditions, and can be used in drug discovery.

In addition, given that NPC1L1 also mediates intestinal absorption of non-cholesterol sterols such as phytosterols and tocopherol, this mouse model is also beneficial for those researchers in the field of sitosterolemia and vitamin E deficiency.

Source:
Journal reference:

Wu, X., et al. (2023). Fluorescent visualization and evaluation of NPC1L1-mediated vesicular endocytosis during intestinal cholesterol absorption in mice. Life Metabolism. doi.org/10.1093/lifemeta/load011

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Mapping the Complex Structure and Function of CRISPR-Cas Protein Scissors