Exploring the Effects of Vascularization Strategies on Brain Organoids

Researchers at Waseda University led by Assistant Professor Kosuke Kataoka, have uncovered crucial insights into brain organoids' development. Their study, published in BMC Biology, compares diverse strategies to vascularize cerebral organoids, demonstrating their impact on neural and vascular cell populations. These results shed light on the importance of neurovascular connections and provide insights to improve brain organoid development.

Exploring the Effects of Vascularization Strategies on Brain Organoids

The development of cerebral organoids can offer opportunities to understand neurodevelopment and brain disease but faces several limitations, such as the lack of vasculature. In this study, researchers compare the various vascularization strategies using integrated RNA-sequencing data analysis of vascularized organoids and fetal brains. Image Credit: Waseda University

Cerebral organoids are three-dimensional, in vitro cultured brains that mimic the activities of the human brain. They have emerged as invaluable tools to comprehend evolution, disease pathogenesis, and neurodevelopmental processes. However, the development of these organoids is still in nascent stages with several limitations that hinder their broad applications. A major obstacle is the absence of a functional vasculature that can restrict the size of organoids, trigger cell death, and prevent cell differentiation in the organoids.

To address this, diverse strategies aiming to vascularize human cerebral organoids have been developed.

Recently, Assistant Professor Kosuke Kataoka, along with co-authors Yuya Sato and Toru Asahi from the Graduate School of Advanced Science and Engineering, Waseda University, conducted a comprehensive investigation into various strategies for vascularizing cerebral organoids. Their study was published online in BMC Biology on November 9, 2023. Kataoka says, “Several strategies have been proposed to construct functional vascular systems in cerebral organoids, however, no integrated comparative study of these strategies previously existed. Therefore, the characteristics and problems of each vascularization strategy have not been precisely characterized.”

Through an integrated comparison of single-cell RNA sequencing (scRNA-seq) data, the study evaluated various vascularized human cerebral organoids created using different approaches, followed by an analysis of these datasets in conjunction with fetal brain data. This research outlined the impact of various vascularization techniques on cell type differentiation and the transcriptome profiles of both neuronal and vascular cells in these organoids.

It was observed that all the vascularization protocols improved the correlation value in most cell types. “This finding suggests that regardless of the protocol type, vascularized cerebral organoids exhibited a gene expression profile closer to the fetal human brain than non-vascularized organoids,” explains Kataoka.

They also found that vascular induction had transcriptomic effects on neuronal and vascular-like cell populations. The vascular cells of the fetal brain showed expression of all the marker genes, but the various vascularized and vascular organoids had an insufficient expression profile. Furthermore, this expression profile was found to be dependent on the vascularization strategy.

The study also revealed the importance of interactions between vascular-like cells and neurons for blood vessels to develop their cerebrovascular-specific profile to perform their vasculature functions characteristic of the brain, like the blood-brain barrier.

Expanding on the future applications of these findings, Kataoka says, "Our findings could contribute to providing more realistic human brain models with blood vessels. This will not only help in developing a better understanding of the human brain but also in accelerating the research on various brain diseases and enable more accurate drug screening."

Vascularized cerebral organoids are unlikely to undergo cell death and, thus are thought to become the standard for future brain research.

The present research is crucial for the fabrication of vascularized organoids in the future. Here's hoping for the development of vascularized organoids with higher fidelity.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Unveiling Cannabinoid’s Potential for Treating Age-Related Brain Degeneration