A Cellular Mechanism Protecting Against Cancer

Susanne Hellmuth and Olaf Stemmann from the Chair of Genetics at the University of Bayreuth have discovered a natural protective mechanism that leads to the programmed death of potentially diseased cells.

Apoptosis

Image Credit: Kateryna Kon/Shutterstock.com

It protects from cancer that can develop as a result of the irregular distribution of genetic information to daughter cells. The enzyme separase plays a central role in these processes. The findings published in "Nature" offer promising approaches for cancer therapy.

With this study, the Bayreuth researchers are following up on their contribution to the regulation of separase recently published in "Nature".

The strict regulation of this enzyme during cell division is a prerequisite for healthy daughter cells to develop. If the separase is activated too early, there is a risk of cellular transformation into malignant cancer cells.

Re-purposed proteins cause the death of diseased cells

In their follow-up study, the Bayreuth geneticists have now discovered a previously unknown protective mechanism of the cell.

It is the separase itself that prevents the threatening consequences of its premature activity: it induces the dividing cell to undergo suicide, a process known as apoptosis. This happens because the separase re-purposes two proteins that usually have the task of counteracting apoptosis. These are the proteins MCL1 and BCL-XL.

In a healthy cell, they prevent the protein BAK from causing the cell to die. Yet, when separase becomes active too early, it cuts these two proteins. As a result, they can no longer fulfill their cell-protecting function and BAK is free to induce apoptosis.

Moreover, separase-dependent processing transforms MCL1 and BCL-XL from anti-apoptotic factors into pro-apoptotic protein fragments. In other words, guardians who are supposed to keep the cell alive become agents of death.

An emergency mechanism protecting against genetic malfunction

Based on these findings, Hellmuth and Stemmann have discovered another important mechanism in the process of cell division.

It ensures that the separase spares healthy cells and actually only attacks the proteins MCL1 and BCL-XL in the case of imminent pathological cell development.

The separase is prepared for this attack as soon as the two proteins have been modified by phosphate groups. The enzyme NEK2A is responsible for this labeling, or phosphorylation, of the proteins. The point is that NEK2A is degraded relatively early in the course of cell development.

Before the cell begins to divide, the enzyme has disappeared - provided that the spindle assembly checkpoint is functional and can ensure that cell division proceeds in an orderly manner.

In this case, the separase fulfills its functions at the right time, without being able to identify and attack the no longer phosphorylated MCL1 and BCL-XL.

However, if the spindle assembly checkpoint is defective, the process of cell division is accelerated: And while NEK2A is still present in the cell, the separase becomes active. Now it recognizes the two proteins, and apoptosis is initiated immediately.

Hellmuth and Stemmann refer to this interaction of the two enzymes they have discovered as the "Minimal Duration of Early Mitosis Checkpoint", or "DMC" for short. It is an emergency mechanism that comes into effect as soon as a defective spindle assembly checkpoint causes chromosome missegregation associated with the risk of carcinogenesis.

A new approach to cancer therapy

The research results published in "Nature" offer several starting points for new cancer therapies. For example, it has been appreciated for quite some time that MCL1 and BCL-XL are often highly over-produced in cancer cells.

In these cases, however, the two proteins protect the wrong cells. They prevent cancer cells from apoptosis, which would have to be induced by proteins such as BAK.

Therefore, a promising approach in the fight against cancer could now be to encourage the separase-dependent transformation of MCL1 and BCL-XL into pro-apoptotic factors because this would be especially harmful to diseased cells. We intend to continue pursuing this approach with various research groups in the future, for example from clinical oncology and drug development. It is possible that this approach will enable us to selectively destroy cancer cells with the very proteins that are used by healthy cells for their own self-protection,"

Stemmann.

Journal reference:

Hellmuth, S., Stemmann, O. Separase-triggered apoptosis enforces minimal length of mitosis. Nature 580, 542–547 (2020). https://doi.org/10.1038/s41586-020-2187-y

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
High-throughput screening identifies potential drugs for low-grade serous ovarian cancer