Study: High levels of iron in the blood can prevent age-related damage

Genes linked to ageing that could help explain why some people age at different rates to others has been identified by scientists. The international study using genetic data from more than a million people suggests that maintaining healthy levels of iron in the blood could be a key to ageing better and living longer.

The findings could accelerate the development of drugs to reduce age-related diseases, extend healthy years of life and increase the chances of living to old age free of disease, the researchers say.

Scientists from the University of Edinburgh and the Max Planck Institute for Biology of Ageing in Germany focused on three measures linked to biological ageing - lifespan, years of life lived free of disease (healthspan), and being extremely long-lived (longevity).

Biological ageing - the rate at which our bodies decline over time - varies between people and drives the world's most fatal diseases, including heart disease, dementia and cancers.

The researchers pooled information from three public datasets to enable an analysis in unprecedented detail. The combined dataset was equivalent to studying 1.75 million lifespans or more than 60,000 extremely long-lived people.

The team pinpointed ten regions of the genome linked to long lifespan, healthspan and longevity. They also found that gene sets linked to iron were overrepresented in their analysis of all three measures of ageing.

The researchers confirmed this using a statistical method - known as Mendelian randomisation - that suggested that genes involved in metabolizing iron in the blood are partly responsible for a healthy long life.

Blood iron is affected by diet and abnormally high or low levels are linked to age-related conditions such as Parkinson's disease, liver disease and a decline in the body's ability to fight infection in older age.

The researchers say that designing a drug that could mimic the influence of genetic variation on iron metabolism could be a future step to overcome some of the effects of ageing, but caution that more work is required.

The study was funded by the Medical Research Council and is published in the journal Nature Communications with DOI 10.1038/s41467-020-17312-3.

Anonymised datasets linking genetic variation to healthspan, lifespan, and longevity were downloaded from the publically available Zenodo, Edinburgh DataShare and Longevity Genomics servers.

We are very excited by these findings as they strongly suggest that high levels of iron in the blood reduces our healthy years of life, and keeping these levels in check could prevent age-related damage. We speculate that our findings on iron metabolism might also start to explain why very high levels of iron-rich red meat in the diet has been linked to age-related conditions such as heart disease."

Dr Paul Timmers, Usher Institute, University of Edinburgh

Dr Joris Deelen from the Max Planck Institute for Biology of Ageing in Germany, said: "Our ultimate aim is to discover how ageing is regulated and find ways to increase health during ageing. The ten regions of the genome we have discovered that are linked to lifespan, healthspan and longevity are all exciting candidates for further studies."

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers Unveil a Key Gene with a Central Role in Learning and Memory Across Mammalian Brain Cells