Researchers identify mechanism that prevents death of neurons

When our neurons -- the principle cells of the brain -- die, so do we. Most neurons are created during embryonic development and have no "backup" after birth. Researchers have generally believed that their survival is determined nearly extrinsically, or by outside forces, such as the tissues and cells that neurons supply with nerve cells.

A research team led by Sika Zheng, a biomedical scientist at the University of California, Riverside, has challenged this notion and reports the continuous survival of neurons is also intrinsically programmed during development.

The study, published in the journal Neuron, identifies a mechanism the researchers say is triggered at neuron birth to intrinsically decrease a general form of cell death -- or "apoptosis" -- specifically in neurons.

When this genetic regulation is stopped, continuous neuronal survival is disrupted and leads to the death of the animal.

An organism's survival, brain function, and fitness are dependent upon the survival of its neurons. In higher organisms, neurons control breathing, feeding, sensation, motion, memory, emotion, and cognition.

They can die of many unnatural causes, such as neurodegenerative diseases, injury, infection, and trauma. Neurons are long-lived cells, but the genetic controls that enable their longevity are unknown.

Zheng's team now reports the central piece of the mechanism involved is a small piece of genetic sequence in Bak1, a pro-apoptotic gene whose activation leads to apoptosis.

Bak1 expression is turned off when this small piece of genetic sequence, termed microexon, is spliced in the final Bak1 gene product. Exons are sequences that make up messenger RNA.

Apoptosis is a pathway that controls cell turnover and tissue homeostasis in all metazoans. Most non-neural cells readily engage in apoptosis in response to intrinsic and extrinsic stress. But this cellular suicidal program needs to be reined in for neurons so that they live for many years. We now show how genetic attenuation of neuronal apoptosis takes place."

Sika Zheng, Associate Professor and Biomedical Scientist , Department of Biomedical Sciences, University of California - Riverside

Zheng's team identified the Bak1 microexon through a large-scale analysis of expression data from human tissues, mouse tissues, human developing brains, mouse developing forebrains, and mouse developing midbrains.

The team first compared neural tissues with non-neural tissues in both humans and mice to identify neural-specific exons.

Then, they found cortical neurons reduce their sensitivity to apoptosis as early as neuron birth.

They also found apoptosis is gradually reduced during neuronal development before neurons make connections or innervate other cells, suggesting factors other than extrinsic signals can play a role.

"We show neurons transform how they regulate cell death during development," Zheng said.

"This is to ensure neuronal longevity, which is needed to maintain the integrity of neural circuits for brain functions."

Next, Zheng's team will study whether the identified mechanism is activated in neurodegenerative diseases and injury that cause neuronal cell death.

Source:
Journal reference:

Lin, L., et al. (2020) Developmental Attenuation of Neuronal Apoptosis by Neural-Specific Splicing of Bak1 Microexon. Neuron. doi.org/10.1016/j.neuron.2020.06.036.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
How the Brain Controls its Cravings for Water and Salt