Novel tool can screen cereal crops for frost damage

Agricultural scientists and engineers at the University of Adelaide have identified a potential new tool for screening cereal crops for frost damage.

Their research, published this week in the journal Optics Express, has shown they can successfully screen barley plants for frost damage non-destructively with imaging technology using terahertz waves (which lie between the microwave and infrared waves on the electromagnetic spectrum).

Frost is estimated to cost Australian grain growers $360 million in direct and indirect losses every year. To minimize significant economic loss, it is crucial that growers' decisions on whether to cut the crop for hay or continue to harvest are made soon after frost damage has occurred. However, analyzing the developing grains for frost damage is difficult, time-consuming and involves destructive sampling."

Jason Able,Project Leader and Professor, University School of Agriculture, Food and Wine

Frost damage can happen when the reproductive organs of the plant are exposed to air temperatures below 0°C during the growing season, with the amount of damage dependent on the severity and occurrence of frost events.

Cereal crops like barley and wheat show a wide range of susceptibility to frost damage depending on the genetics, management practices, environmental conditions and their interactions. For example, one-degree difference in temperature could result in frost damage escalating from 10% to 90% in wheat.

Supported by the University's Waite Research Institute and the Grains Research and Development Corporation, the researchers tested whether a state-of-art imaging system at the Terahertz Engineering Laboratory in the School of Electrical and Electronic Engineering, could be used to scan both barley and wheat spikes for frost damage.

Terahertz waves are able to penetrate the spike to determine differences between frosted and unfrosted grains.

"Barley and wheat spikes subjected to frost do not necessarily show symptoms for many days until after the frost event," says Professor Able. "This technology holds promise for identifying frost damage before symptoms can be visibly detected."

The researchers, including Dr Wendy Lee, Dr Ariel Ferrante and Associate Professor Withawat Withayachumnankul, found that terahertz imaging can discriminate between frosted and unfrosted barley spikes, and that the results were repeatable over many scans. This imaging technology was also able to determine individual grain positions along the length of the individual spike.

"This technology could possibly be developed into a field-based tool, which could be used by growers and agronomists to assist with their crop management and help minimize losses due to frost," says Professor Able.

"The technology as it stands could also be used by plant breeders to make more rapid and more informed selection decisions about the performance of one breeding line over many others."

Further R&D is required to enable field deployment of terahertz non-destructive inspection for early frost damage and the research team is looking to develop a working prototype for field tests with other collaborators.

Source:
Journal reference:

Lee, W. S. L., et al. (2020) Assessing frost damage in barley using terahertz imaging. Optics Express. doi.org/10.1364/OE.404618.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoLifeSciences.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
New Research Highlights Gut's Role in Preventing Infections